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(57) ABSTRACT

A decompression engine may include an input configured to
receive an input code comprises one or more bits from a
bitstream of encoded data, a symbol decoder coupled with the
input, where the symbol decoder is configured to calculate,
based on the input code, a plurality of candidate addresses
each corresponding to a code group. The symbol decoder may
further include a group identifier module coupled with the
symbol decoder, wherein the group identifier module is con-
figured to identify one of the plurality of code groups corre-
sponding to the input code, and a multiplexer coupled with the
group identifier module, wherein the multiplexer is config-
ured to select as a final address one of the plurality of candi-
date addresses corresponding to the identified code group.
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1
EFFICIENT DEFLATE DECOMPRESSION

TECHNICAL FIELD

This disclosure relates to the field of data compression and,
in particular, to a decompression engine.

BACKGROUND

Modern computing applications frequently benefit from
the use of lossless data compression, which is a class of data
compression wherein the exact original data is restored from
the compressed form of the data without any loss of informa-
tion. Lossless data compression may be used, for example, to
compress databases files, documents, executable files, or
other types of files where even minor differences between the
original data and the decompressed data may not be tolerated.

One technique for performing lossless data compression is
known as Huffman encoding, a process wherein symbols are
encoded into variable length bit strings based on the actual or
estimated frequency of occurrence of those symbols in the
original data. Each symbol in a Huffman encoding scheme
may represent, for example, a single character. The more
frequently occurring symbols are assigned to shorter bit
strings, while less frequently occurring symbols are assigned
to longer bit strings. Huffman encoding uses “prefix-free
codes”, where the bit string for any given symbol is never a
prefix for the bit string of any other symbol.

In order for a computer system to decode a set of Huffman
encoded data, the computer system may construct a tree struc-
ture, then use the sequence of bits of the encoded data to
traverse the tree structure in order to correlate each of the
prefix-free codes in the encoded data with the appropriate
symbol.

Huffman encoding is utilized as part of the Deflate data
compression algorithm, which organizes encoded data into a
series of blocks. Each of these blocks contains information
about the compression method used for the encoded data in
the block, and also includes the Huffman trees to be used for
decoding the data.

Current implementations for decompressing Deflate
encoded data rely on redundant storage in memory with mul-
tiple memory access penalties for storing and traversing the
Huffman trees. Such implementations are therefore limited in
speed of decompression and require a substantial amount of
available memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example,
and not by way of limitation, in the figures of the accompa-
nying drawings.

FIG. 1 illustrates an embodiment of a decompression
engine.

FIG. 2 illustrates symbol decoder of a decompression
engine, according to one embodiment.

FIG. 3A illustrates an embodiment of a code length
decoder module.

FIG. 3B is a table illustrating the generation of starting
codes for symbols in a code length alphabet, according to one
embodiment.

FIG. 4A illustrates an embodiment of a table generator.

FIG. 4B is a table illustrating the generation of starting
codes for symbols in a literal/length alphabet, according to
one embodiment.

FIG. 4C illustrates decoding tables, according to one
embodiment.
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2

FIG. 5 illustrates an embodiment of a decoder module.
FIG. 6 is a flow diagram illustrating an embodiment of a
decompression process.

DETAILED DESCRIPTION

The following description sets forth numerous specific
details such as examples of specific systems, components,
methods, and so forth, in order to provide a good understand-
ing of the embodiments. It will be apparent to one skilled in
the art, however, that at least some embodiments may be
practiced without these specific details. In other instances,
well-known components or methods are not described in
detail or are presented in a simple block diagram format in
order to avoid unnecessarily obscuring the embodiments.
Thus, the specific details set forth are merely exemplary.
Particular implementations may vary from these exemplary
details and still be contemplated to be within the spirit and
scope of the embodiments.

One embodiment of a decompression engine may perform
decompression of Huffman encoded data by generating a
decoding table for decoding the data, instead of a Huffman
tree. The use of the decoding table may require less memory
and fewer memory accesses than other decoding methods that
utilize Huffman tree traversal. The use of a decoding table is
also particularly well suited for implementation in a hardware
decompression engine, as compared to a Huffman tree decod-
ing method. In particular, hardware components may be used
to quickly perform the key operations for decoding the data
using the decoding table method. In addition, the decompres-
sion engine hardware also performs such key operations in
parallel, resulting in a faster decompression rate.

One embodiment of such a decompression engine effi-
ciently decompresses data stored in a series of blocks, such as
Deflate (RFC 1951) compressed data. For example, each data
block in a Deflate stream is either uncompressed, fixed Huff-
man encoded, or dynamic Huftman encoded. The decompres-
sion engine decodes uncompressed blocks at a rate of at least
1 byte per cycle.

The decompression engine decodes Huffman-encoded
blocks by constructing Huffman tables, decoding the encoded
data into symbols using the Huffman tables, and reconstruct-
ing the original sequence of bytes of the original uncom-
pressed data. The decompression engine can create a static
Huffman table in a single cycle, and can create dynamic
Huffman tables in O(n) cycles, where n represents the number
of elements in the encoded alphabet. One such approach for
creating Huffman tables is described in U.S. patent applica-
tion Ser. No. 13/895,109 filed May 15, 2013, which is incor-
porated herein by reference in its entirety.

A Z1ib compressed file as specified in RFC 1950 (Deutsch,
J. Gailly L., and Jean-Loup Gailly. “RFC 1950—ZLIB Com-
pressed Data Format Specification version 3.3.” IETF/IESG,
May (1996)) consists of a header, Deflate compressed data,
and an Adler-32 checksum ofthe original uncompressed data.
The header specifies the compression method for the Deflate
compressed data and also include various flags. A series of
blocks follows the header and represents the Deflate com-
pressed data, as described in RFC 1951 (Deutsch, L. Peter.
“DEFLATE compressed data format specification version
1.3 (1996)).

The process for decompressing a Deflate compressed file
includes individually decompressing each compressed block
in the file. Atthe beginning of each block is a 3-bit header. The
3-bit header includes a BFINAL bitand two BTYPE bits. The
BFINAL bit indicates whether the block is the final block in
the compressed file. The BTYPE bits indicate the compres-



US 9,094,039 B2

3

sion type, with the bits ‘00’ indicating an uncompressed
block, ‘01’ indicating a fixed Huffman encoded block, and
10’ indicating a dynamic Huffman encoded block.

An uncompressed block identified by the BTYPE bits ‘00”
includes an additional 2 byte length field that indicates the
number of bytes of data in the uncompressed block. A decom-
pression engine processes the uncompressed block by deter-
mining the number of bytes to extract based on the 2 byte
length field, then extracting the bytes of data accordingly.

The process for decompression of a fixed Huffman
encoded block identified by BTYPE bits ‘01’ includes recon-
stitution of the Huffman codes utilized during the compres-
sion process. For fixed Huffman blocks, the Huffman codes
are predefined so that the decompression engine can initialize
a Huffman code table with minimal computation. For a
dynamic Huffman encoded block, the block includes a header
that is parsed and processed to create decoding tables for
decoding the encoded data. The decoding tables for a block
include a Huffman code table and a starting code/pointer table
that stores starting codes and starting addresses for each of a
set of code groups.

A fixed Huffman compressed block includes a stream of
symbols from three distinct alphabets: 256 literal symbols, 29
symbol lengths, and 30 symbol distances. These symbols are
encoded using two fixed Huffman code sets as described in
the Deflate specification RFC-1951. The decompression
engine processes a fixed Huffman encoded block by recreat-
ing the Huffman tables for decoding the symbols in the
stream, restoring the symbols including literal symbols and
length-distance pairs from the bitstream, and converting the
length-distance pairs into strings of literal symbols. The
resulting output is a stream of decoded literal symbols.

For a dynamic Huffman encoded block identified by
BTYPE bits <10, the decompression process also includes
reconstitution of the Huffman codes utilized during the com-
pression process. A dynamic Huffman encoded block also
includes a stream of symbols from the three alphabets, similar
to the fixed Huffman encoded block; however, in contrast
with the fixed Huffman encoded block, the Huffman code sets
for the dynamic Huffman encoded block are encoded in the
bitstream prior to the compressed data. These Huffman code
sets are themselves Huftman encoded by another Huffman
code set that is also embedded in the bitstream. Thus, all three
of the Huffman code sets are embedded in the bitstream.

In addition to BFINAL and BTYPE, a dynamic Huffman
encoded block also includes the following fields: HLIT,
HDIST, HCLEN, Code lengths for the code length alphabet,
code lengths for the literal/length alphabet, and code lengths
for the distance alphabet.

The HLIT field has a length of 5 bits and indicates the
number of literal and length codes used after subtracting 257.
Thus, the number of literal and length codes can be obtained
by adding 257 to the number indicated in the HLIT field.

The HDIST field has a length of 5 bits and indicates the
number of distance codes after subtracting 1. Thus the num-
ber of distance codes can be obtained by adding 1 to the
number indicated in the HDIST field.

The HCLEN field has a length of 4 bits and indicates the
number of code lengths in the code length alphabet after
subtracting 4. Thus, the number of code lengths can be
obtained by adding 4 to the number indicated in the HCLEN
field.

The next (HCLEN+4)x3 bits indicate the code lengths for
the code length alphabet. Each 3 bit segment corresponds to
one of the code lengths in the following order: 16, 17, 18, 0,
8,7,9,6,10,5,11,4,12,3,13,2,14, 1,and 15. Thus, the first
3 bits indicate the length for code length 16, the second 3 bits
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4

indicate the length for code length 17, and so on. The decom-
pression engine uses these code lengths to construct a Huff-
man table for decoding code lengths.

The code lengths for the code length alphabet are followed
by HLIT+257 code lengths for the literal/length alphabet and
HDIST+1 code lengths for the distance alphabet. These
sequences of code lengths are Huffman encoded using the
above described code length alphabet. This is followed by the
payload Huffman encoded data.

FIG. 1 illustrates an embodiment of a decompression
engine 100. The decompression engine 100 is capable of
decompressing any data that has been compressed according
to the Deflate compression method as described above. The
decompression engine 100 includes a symbol decoder 102
that receives encoded data from an input 101 of the decom-
pression engine 100. The symbol decoder 102 decodes the
received input data into a sequence of symbols, which is
transmitted to the symbol restoration block 110. The symbol
restoration block 110 then recovers the original data based on
the received symbols, which includes literal symbols and may
also include string symbols represented as length-distance
pairs.

The symbol decoder 102 creates decoding tables for both
fixed and dynamic Huffman encoded blocks. For fixed Huft-
man encoded blocks, the decoding tables are predetermined
so that the symbol decoder 102 simply initializes the decod-
ing tables at the start of processing the fixed Huffman block.
For a dynamic Huffman encoded block, the symbol decoder
102 first recreates the code length table. The code length table
is then used to decode the code lengths and calculate the
Huffman codes for each entry in the literal/length and dis-
tance Huffman decoding tables. The literal/length decoding
tables are used for decoding both literal symbols and string
lengths, while the distance decoding tables are used for
decoding distances associated with the string lengths.

Oncethe literal/length decoding tables and distance decod-
ing tables have been created, the decompression engine 100
begins the process of symbol restoration. The decompression
engine 100 uses an input code including the leading bits from
the input bitstream received at input 101 to address an entry in
the literal/length Huftman code table. The table entry identi-
fies the 8-bit symbol to insert into the output stream as well
the number of bits in the input code, which is also the number
of bits of the input bitstream that are consumed for that
symbol. Any bits of the input stream that have yet to be
consumed are used in the next cycle to identify the next
symbol to insert into the output stream. This process contin-
ues until the entire input block has been consumed.

The symbols decoded by the symbol decoder 102 are trans-
mitted to the symbol restoration block 110. The symbol res-
toration block 110 reconstructs the original data based on the
received decoded symbols, which includes literal symbols
and may also include strings represented as length-distance
pairs. The symbol restoration block 110 reconstructs the
original data by recovering the strings based on the length-
distance pairs, and inserting the decoded literal symbols and
recovered strings into the output stream of literal symbols in
the appropriate order.

The symbols decoded by the symbol decoder 102 are out-
put to a demultiplexer 111 in the symbol restoration block
110. The decoded symbols received by the symbol restoration
block 110 from the symbol decoder 102 may be either an 8-bit
literal symbol or a string represented as a length-distance pair.
The symbol restoration block 110 assigns an address in the
output stream to each of the received symbols and places the
symbol in either the literal first-in-first-out (FIFO) buffer 112
orthe string FIFO buffer 113 to await insertion into the output
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stream. The demultiplexer 111 sorts the symbols, transmit-
ting literal symbols to the literal first-in-first-out (FIFO)
buffer 112 and transmitting string symbols to the string FIFO
113. The symbol restoration block 110 simply inserts the
decoded literal symbols into the symbol output stream 116 at
their respective assigned addresses.

Strings are sequences of literal symbols represented as
length-distance pairs. The symbol restoration block 110
expands these length-distance pairs back to the original
sequence of literal symbols before merging this original
sequence into the symbol output stream 116. The process of
string restoration takes place after the entire input block has
been decoded. Alternatively, string restoration may occur
before the entire block has been decoded.

The length-distance pairs are used to represent strings of
literal symbols that have been repeated at some point in the
sequence of decoded literal symbols. For example, as part of
the Zlib compression algorithm, duplicate strings identified
in the original data are replaced with a length-distance pair.
The distance parameter specifies the starting point of the
reference string in the history buffer 114. The distance param-
eter indicates the starting point of the string as an offset into
the decompressed data stream relative to the current position,
or the most recently decoded symbol. The distance parameter
may be a value indicating between 1 and 32,768 literals. The
length parameter specifies the number of literal symbols to
replicate from the history buffer 114, and has a value between
3 and 258 literals.

The literal FIFO 112 and the string FIFO 113 are both
connected to the history bufter. Arbitration logic 117 ensures
that the literal symbols from the literal FIFO 112 and the
strings from string FIFO 113 are transferred to history buffer
114 in the correct order. The literal symbols and string sym-
bols are stored in the FIFOs 112 and 113 along with metadata
indicating their positions in the final output stream.

In response to receiving a length-distance pair from the
string FIFO 113, the read interface 115 accesses the literal
symbols stored in the history buffer 114 in order to identity
and retrieve the string of literal symbols to be copied. The
recovered string replaces the corresponding length-distance
pair in the string FIFO 113, and is transmitted to the history
buffer 114 subject to the arbitration process performed by
arbitration logic 117 to maintain the original order of the
literal symbols and recovered strings of literal symbols. The
history buffer 114 thus stores the recovered strings of literal
symbols in the correct order with the literal symbols received
from literal FIFO 112.

The symbol decoder 102 continues to decode literal and
string symbols in parallel with the restoration process for a
previously decoded string. For example, the symbol decoder
102 decodes a first length-distance pair that is transmitted to
the string FIFO 113. While the string of symbols is being
restored based on the first length-distance pair, the symbol
decoder 102 continues to decode more literal symbols, which
are queued in the literal FIFO 112, and length-distance pairs,
which are queued in the string FIFO 113. In one embodiment,
the literal symbols may be inserted into the history buffer
after the string for the first length-distance pair has been
restored; alternatively, the literal symbols may be inserted
prior to the restoration of the string, based on their assigned
addresses.

The decompression process is complete after all of the
length-distance pairs have been replaced with their corre-
sponding recovered strings. The resulting data stream repre-
sents the original uncompressed data. The read interface 115
reads the uncompressed data from the history buffer 114 and
transmits the uncompressed data to a symbol output 116,
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which may represent an output file or bitstream, for example.
An Adler-32 checksum is created over the uncompressed data
stream and compared against the checksum in the header.

FIG. 2 illustrates a symbol decoder 102, according to an
embodiment. As shown in FIG. 2, the symbol decoder 102
includes a code length decoder module 201 connected via
combinatorial logic 202 to a Huffman table generator 203,
memory storing the literal/length and distance tables 204,
memory storing the start codes and start addresses 205 for
each of a number of code groups, and a decoder module 206.

The code length decoder module 201 and decoder module
206 receive a sequence of bits from input 101. The sequence
of bits are bits from a dynamic Huffman encoded Deflate
compressed block, as previously described. The code length
decoder module 201 receives HCLEN+4 code lengths each
including 3 bits segments corresponding respectively to the
code length symbols 16, 17,18, 0,8,7, 9,6, 10, 5, 11,4, 12,
3,13, 2,14, 1, and 15 in the code length alphabet. The code
length decoder module 201 generates a table for decoding
code length symbols based on these received 3-bit code
lengths.

The code length decoder module 201 decodes the code
lengths for the literal/length alphabet and the distance alpha-
bet. Accordingly, the code length decoder module 201 out-
puts a corresponding decoded code length 207 in response to
receiving, at input 101, one of the HLIT+257 encoded code
lengths (encoded using the code length alphabet) for aliteral/
length symbol, or in response to receiving one of the
HDIST+1 encoded code lengths (also encoded using the code
length alphabet) for a distance symbol.

The combinatorial logic 202 converts the code length 207
into signals to be used by the Huffman table generator 203 to
reconstruct the literal/length and distance Huffman tables
204, and the group starting codes and group starting addresses
205 that will be used to decode the Deflate block. Decoder
module 206 accesses the Huffman tables 204 and the starting
codes and addresses 205 in order to decode input codes from
the input 101 into the original decoded symbols.

FIG. 3A illustrates a code length decoder module 201,
according to an embodiment. The code length decoder mod-
ule 201 includes a code length table generator 300, which
receives the HCLEN+4 code lengths 301 for the code length
alphabet via input 101. Each of the 3-bit code lengths 301 is
received at combinatorial logic 302 and used to control the
operation of the barrel shifters 303(1)-303(7) and the multi-
plexers, such as multiplexer 304.

FIG. 3B is a table illustrating the process of generating the
decoding table for the code length alphabet, according to an
embodiment. Each of the code registers 306(1)-306(7) corre-
spond to one of the bit lengths 1-7, respectively, and are
initialized to the corresponding number of zeros. For
example, code register 306(1) stores one bit and is initialized
to ‘0’, code register 306(2) stores two bits and is initialized to
‘00’, and so on.

The combinatorial logic 302 receives a 3-bit code length i
and controls barrel shifters 303(1)-303(7) such that each of
the barrel shifters corresponding to a j-bit code group, where
the ordinal number j is higher than the received code length 1,
is incremented. For a given barrel shifter that is to be incre-
mented, the output of the barrel shifter is a binary ‘1” shifted
by (j-i) places, or 2V,

For example, the 3-bit code lengths 301 are received for
symbols in the code length alphabet in the predetermined
order 16, 17, 18,0, 8,7,9, 6, 10,5, 11, 4, 12,3, 13, 2, 14, 1,
and 15; thus, the first 3-bit code length received corresponds
to the code length symbol ‘16°. This 3-bit code length is
‘110’ indicating that the Huffman code for symbol ‘16’ has a
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length of 6 bits. Accordingly, the combinatorial logic 302
causes the barrel shifters corresponding to bit lengths higher
than 6 to be incremented by 2", Thus, barrel shifter 303(7),
corresponding to bit length 7, outputs the bits ‘0000010°.

Each of the barrel shifters 303(1)-303(7) has its output
connected to an input of a multiplexer; for example, barrel
shifter 303(7) has its output connected to one of two inputs of
multiplexer 304. The other input of multiplexer 304 is con-
nected to a ‘0’ bit. For each multiplexer that is connected to
barrel shifters having a higher ordinal number j than the
received code, the combinatorial logic 302 causes the corre-
sponding multiplexer to select the barrel shifter input instead
of'the ‘0’ bit. Multiplexers connected to barrel shifters having
an ordinal value less than or equal to the received code will
select the ‘0’ input.

Thus, for the higher-numbered code registers, the barrel
shifter output is used to increment the value of the corre-
sponding code register. For example, the output ‘0000010
from barrel shifter 303(7) is selected at the multiplexer 304
and added to the existing value ‘0000000’ stored in the code
register 306(7). The resulting incremented value of
‘0000010’ is stored back into the code register 306(7). For
code registers that are equal or less than the received code, the
‘0’ bit is selected at the multiplexer so that the value in the
code register is not incremented.

This process repeats for each of the 3-bit code lengths
received by the code length table generator 300. With refer-
ence to the table in FIG. 3B, the values stored in the code
registers 306(1)-306(7) change as shown as each 3-bit code
length is processed in order from the top of the table to the
bottom.

The final values stored in the code registers 306(1)-306(7)
after all of the 3-bit code lengths have been processed repre-
sent the starting codes for each of a number of code length
groups. Each code length group includes all of the Huffman
codes having the same length; for example, a code length
group corresponding to a code length of 6 includes the codes
for “16”and ‘1°, which both have 6 bit code lengths. The 1-bit,
2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 7-bit code groups have final
starting codes of 0, 00, 110, 1100, 1110, 111110, and
0000000. The count (‘Cnt’) columns in the table of FIG. 3B
indicate the number of codes in each group.

The 3-bit code lengths 301 are stored in the code registers
310 via multiplexer 309. Each of the registers in the code
registers 310 corresponds to one of the 19 code length sym-
bols in the code length alphabet. Each of the 3-bit code
lengths 301 is thus stored in the code register for its corre-
sponding code length symbol at the same time that the code
length table generator 300 receives and processes the 3-bit
code lengths 301.

After the HCLEN+4 code lengths 301 have been processed
and the final starting codes in registers 306(1)-306(7) deter-
mined, the code length decoder module 201 may populate the
length code decoding table stored in code registers 310.
Before the registers 310 are populated, each of the registers
310 contains the 3-bit code length for the code length symbol
associated with the register. The 3-bit code length identifies
the code group corresponding to the code length symbol.
Thus, for each of the registers 310, the starting code for the
code group corresponding to the symbol associated with the
register is retrieved from the appropriate code register 306 in
the code length table generator 300. The retrieved starting
code is then stored in the register 310, overwriting the 3-bit
code length.

For example, the register corresponding to the code length
symbol ‘0” would initially store the 3-bit code length value
‘010’ indicating that the code length symbol ‘0’ has a code
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length of 2. Accordingly, the starting code for Code Group 2
(for 2-bit codes) is retrieved from the register 306(2) for Code
Group 2. This starting code is stored in the register for code
length symbol ‘0. The value in the register 306(2) is then
incremented by 1 so that the next code length symbol having
acode length of 2 receives the incremented code. This process
is repeated until all 19 of the symbols are associated with a
code in registers 310.

The mask registers 311 also include a register for each of
the 19 code length symbols in the code length alphabet. The
combinatorial logic 308 receives the code lengths 301 and
generates a corresponding bit mask for each of the code
length symbols. For a code length 301 of i, the bit mask
includes i ‘1” bits, thus allowing i leading bits from the input
101 to be compared. For example, a code length 301 of 5’
causes a bit mask of ‘0011111’ to be generated. The generated
bit masks are stored in the mask register 311 while the code
length table generator 300 receives and processes the 3-bit
code lengths 301.

Once each of the symbols in the code length alphabet is
associated with both a code (stored in the code registers 310)
and a bit mask (stored in the mask registers 311), the com-
parison logic 312 performs a comparison to determine
whether the input code 314, which has a maximum size of
7-bits, matches the code. The bit mask for a symbol indicates
the number of bits of the input code 314 to be compared. For
example, since the symbol ‘0’ has a code length of 2, the bit
mask for the symbol ‘0’ indicates that only the 2 leading bits
of the input code 314 are to be compared with the code for
symbol ‘0.

The comparison logic 312 performs the comparisons for all
of'the symbols in parallel. Since only one code (correspond-
ing to one symbol) matches the input code, the outputs of the
comparison logic 312 are ‘0’ except for one ‘1’ that indicates
the matching code. An encoder 313 then encodes the com-
parison outputs into a 5-bit representation of the code length
207 corresponding to the input code 314. The code length 207
further indicates the number of bits of the input bitstream that
are consumed.

The code length decoder module 201 thus generates a
decoding table based on the (HCLEN+4) 3-bit codes, and
subsequently uses the decoding table to decode the HLIT+
257 code lengths for generating the literal/length Huffman
table and the HDIST+1 code lengths for generating the dis-
tance Huffman table.

FIG. 4A illustrates a table generator 203 for generating
decoding tables, such as the decoding tables 204 and 205,
according to an embodiment. The table generator 203 func-
tions similarly as the code length table generator 300 illus-
trated in FIG. 3A. The table generator 203 is coupled to an
input 401 from which it receives a set of input codes repre-
senting code lengths that have been decoded by the code
length decoder module 201. The table generator generates a
Huffman code table and a starting code/pointer table based on
these received input codes. Each of the input codes may be
one of the 5-bit code lengths 207, or may be deterministically
generated based on one of the code lengths 207 by the com-
binatorial logic 202 illustrated in FIG. 2.

The table generator 203 has its own combinatorial logic
402 that converts the received input code to signals that are
used to control the operation of barrel shifters 403(1)-403(N)
and the multiplexers to which the barrel shifters 403(1)-403
(N) are connected, such as multiplexer 404. The barrel
shifters 403, multiplexers, and adders, such as adder 405,
function together to update a set of starting codes stored in the
code registers 406 in response to input code lengths received
at input 401.
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FIG. 4B includes a table illustrating the contents of the
code registers 406(1)-406(4) as symbol-length pairs are pro-
cessed. In one embodiment, additional higher-numbered
code registers may be present; however, they are not repre-
sented in FIG. 4B for the sake of clarity. As illustrated in FIG.
4B, the symbol-length pairs are added in sequence from the
top row of the table to the bottom row, starting with the literal
symbol ‘A’. The symbol itself is not transmitted to the table
generator but is implicit based on a predetermined lexical
order of the symbols. For example, the nth code length
received at the input 401 corresponds to the nth symbol in the
lexical order.

For each of the code lengths received from input 401, the
inputs of barrel shifters 403(1)-403(N) are controlled by the
logic 402 so that barrel shifters corresponding to a j-bit code
group, where the ordinal number j is higher than the received
code length i, is incremented. For a given barrel shifter that is
to be incremented, the output of the barrel shifter is a binary
“1” shifted by (j-i) places, or 209,

For example, the first code length received is “3’, indicating
that the literal symbol ‘A’ is represented by a 3-bit code.
Accordingly, the combinatorial logic 402 causes the barrel
shifters corresponding to bit lengths greater than 3 to be
incremented by 2%, Thus, barrel shifter 403(4), correspond-
ing to bit length 4, outputs the bits ‘0010’. As an additional
example, when the code length ‘2’ for symbol ‘F’ is received,
the barrel shifter 403(3) outputs the bits ‘010” and the barrel
shifter 403(4) outputs the bits ‘0100°.

Each of the barrel shifters 403(1)-403(N) has its output
connected to an input of a multiplexer; for example, barrel
shifter 403(1) has its output connected to one of two inputs of
multiplexer 404. The other input of multiplexer 404 is con-
nected to a ‘0’ bit. For each multiplexer that is connected to
barrel shifters having a higher ordinal number j than the
received code length i, the combinatorial logic 402 causes the
corresponding multiplexer to select the barrel shifter input
instead of the ‘0’ bit. Multiplexers connected to barrel shifters
having an ordinal value less than or equal to the received code
will select the 0’ input.

Thus, for each of the code registers 406 having a higher
ordinal number j than the received code length i, the barrel
shifter output is used to increment the value of the corre-
sponding code register. For example, when the code length
2’ is received corresponding to the symbol ‘F’, the output
‘0100’ from barrel shifter 403(4) is selected at the multiplexer
404 and added via adder 405 to the existing value ‘1010’
stored in the code register 406(4). The resulting incremented
value of ‘1110’ is stored back into the code register 406(4).
For code registers that are equal or less than the received code,
the combinatorial logic 402 causes the ‘0’ bit to be selected at
the multiplexer so that the value in the code register is not
incremented.

The table generator 203 also updates a set of starting
addresses, which are stored in memory 205 illustrated in FIG.
2, during the processing of the received code lengths. Each
starting address is associated with one of the code groups.
When a code length i is received, each starting address for a
code group having a bit length j that is greater than i is
incremented. With reference to FIG. 4B, for example, when
code length ‘2’ is received corresponding to symbol ‘F’; each
starting address associated with a code group having j>2 is
incremented. Thus, the starting codes for Group 3 and Group
4 are incremented from 0 to 1 and from 5 to 6, respectively.

FIG. 4C illustrates a Huffman code table 412 (which exem-
plifies one of the tables 204) and a start code and pointer table
413 (which exemplifies one of the tables 205). The Huffman
code table 412 is generated by an insertion sort process as the
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code lengths for each literal symbol are received. The literal
symbols are sorted primarily by their code lengths, then by
their lexical orders. In other words, every symbol having a
shorter code length is stored at a lower address in the table 412
than any symbol having a longer code length; in addition,
symbols having the same code length are sorted lexically with
respect to each other. For example, ‘A’ has a code length of 3
and is accordingly stored at a higher address than ‘F” having
acodelength of2, and is stored at a lower address than the ‘G’
and ‘H’ symbols having a code length of 4. Symbols A-E have
the same code lengths of 3 and are sorted in lexical order
relative to each other.

This process of updating the starting codes, starting
addresses, and the Huffman code table 412 repeats for each of
the code lengths that the table generator 203 receives. With
reference to the table in FIG. 4B, the values stored in the code
registers 406(1)-406(4) change as shown as each code length
is processed in order from the top of the table to the bottom.

The final values stored in the code registers 406(1)-406(4)
after all of'the code lengths have been processed represent the
starting codes for each of the code groups. As illustrated in
FIG. 4B, the code groups Group 1, Group 2, Group 3, and
Group 4 include codes having lengths of 1-bit, 2-bits, 3-bits,
and 4-bits. These code groups have final starting codes of <0’
‘00, ‘010’, and ‘1110, respectively. The code groups have
final starting addresses of 0, 0, 1, and 6. When all of the code
lengths have been processed, the final starting codes and
starting addresses are stored in the table 413. The starting
addresses are stored as pointers.

FIG. 5 illustrates an embodiment of a decoder module 206
that utilizes the final starting codes and final starting
addresses to decode a sequence of input codes representing
the payload data of the block. The decoder module 206
receives an input code from input 101. The decoder module
206 may process up to as many bits from the input bitstream
as the maximum length input code. For example, if the maxi-
mum length for an input code is 15 bits, the decoder module
206 may process up to 15 bits from the input bitstream at a
time. The input code representing the symbol to be decoded
may include fewer than all of the 15 bits.

The decoder module 206 includes a parallel branch corre-
sponding to each code group, where each parallel branch
includes a subtractor 511 and an adder 512. As illustrated in
FIG. 5, the branch corresponding to Group 1 (for 1-bit codes)
includes subtractor 511(1) and adder 512(1), the branch cor-
responding to Group 2 (for 2-bit codes) includes subtractor
511(2) and adder 512(2), and so on.

As illustrated, decoder module 206 includes 15 branches;
however, alternative embodiments may include fewer or
more branches to accommodate fewer or more code groups.
In decoder 206, each of the branches is used to calculate a
candidate address at which the decoded symbol may possibly
be found in the literal/length decoding table 204. Each branch
and candidate address calculated by the branch thus corre-
sponds to one of the code groups. Each branch processes a
number of bits corresponding to its associated code group.
For example, the branch for Code Group 1 (for 1-bit codes)
receives one bit [14], the branch for Code Group 2 (for 2-bit
codes) receives two bits [14:13], the branch for Code Group
15 (for 15-bit codes) receives 15 bits [14:0], and so on.

Each of the subtractors 511 receives a sequence of these
branch input bits representing a branch input value and sub-
tracts a starting code from the branch input value. The starting
code corresponds to the code group associated with the
branch. For example, in the branch associated with Code
Group 15, subtractor 511(15) subtracts the starting code 501
(15) for Code Group 15 from the branch input value to obtain
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an offset value 505. Each subtractor 511 obtains the starting
code from a memory register in the table 413, illustrated in
FIG. 4C.

The adders 512 for each branch add to the offset values the
starting address corresponding to the code group associated
with the branch in order to calculate a candidate address for
the code group. For example, in the branch associated with
Code Group 15, adder 512(15) generates the candidate
address 506 by adding the starting address 502(15) for Code
Group 15 to the offset 505. Each adder 512 obtains the start-
ing address from a memory register in the table 413, illus-
trated in FIG. 4C.

A candidate address Addr, for Group j (including j-bit
codes) can generally be calculated as being equal to (Sym-
Code-Code,.StartCode)+Code,.StartAddr, where SymCode
is the branch input value, Code,.StartCode is the starting code
for Group j, and Code;.StartAddr is the starting address for
Group j. Because the calculation of candidate addresses is
performed by the branches in parallel, the decoder module
206 is capable of processing literal symbols in no more than
a single clock cycle and length-distance pairs in no more than
two clock cycles.

The decoder module 206 further includes a group identifier
module 500, which identifies a code group based on the input
code received at input 101. The group identifier module 500
includes comparison logic 513 that compares the input code
with a starting code 501 for each of the code groups in par-
allel. The comparison logic 513 obtains the starting codes 501
from table 413.

The comparison logic 513 outputs a ‘1’ for each of the
starting codes 501 where the starting code 501 is less than or
equal to the input code, and otherwise outputs a ‘0’. The input
code belongs to the highest ordinal group whose starting code
is less than or equal to the input code. For example, as illus-
trated in FIG. 5, the comparison logic 513 compares the input
code with 15 starting codes 501(1)-505(15), resulting in a
15-bit comparison result. The comparison result identifies the
code group in which the input code belongs.

Each of the candidate addresses corresponds to one of the
code groups; thus, the encoder 503 uses the comparison result
to select the candidate address corresponding to the identified
code group via multiplexer 510. In general, if the comparison
logic 513 determines that the input code belongs to Code
Group j, then the multiplexer 510 selects the candidate
address corresponding to Code Group j. The selected candi-
date address is the final symbol address 511 indicating a
location in the decoding tables 204 where the decoded sym-
bol can be found.

The output of multiplexer 510 is connected to an input of
decoding tables 204. In response to receiving the final symbol
address 511 from the multiplexer 510, the decoding tables
204 output the decoded symbol from a memory address
matching the final symbol address. Each time a symbol is
decoded, the input stream is advanced by the code length of
the input code. For example, if Group j is identified as the
code group containing the input code, then j bits are con-
sumed from the input bitstream. This decoding process is
repeated until the end of the block is reached.

The symbol restoration block 110, illustrated in FIG. 1,
further processes the stream of decoded symbols. As previ-
ously described, the demultiplexer 111 sorts the symbols into
the FIFOs 112 and 113, the strings represented as length-
distance pairs are recovered from the history buffer 114, and
the final stream of literal symbols and recovered strings of
literal symbols are stored in the history buffer 114 in the
correct sequence before being written out to symbol output
116.
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The decoder module 206 of the symbol decoder 102 con-
tinues to perform the process of decoding input codes, includ-
ing the calculation of candidate addresses and identifying of
code groups for the input codes, at the same time that the read
interface module processes a previously decoded length-dis-
tance pair by retrieving from the history buffer the string of
symbols specified by the length-distance pair.

FIG. 6 is a flow diagram illustrating a process 600 for
decompressing a block of encoded data, according to one
embodiment. A decompression engine such as decompres-
sion engine 100, illustrated in FIG. 1, performs the process
600 in order to decompress data in an uncompressed, fixed, or
dynamic Huffman encoded block.

Process 600 begins at block 601. At block 601, the decom-
pression engine parses the block header of a block of encoded
data. From the header, the decompression engine determines
whether the block is uncompressed, fixed Huffman encoded,
or dynamic Huffman encoded. If the block is a dynamic
Huffman encoded block the header also includes the fields
HLIT, HDIST, HCLEN, as previously described.

For an uncompressed block, the process 600 transitions
from block 601 to block 635. At block 635, the next symbol is
processed. For an uncompressed block, this simply includes
reading the symbol directly from the block of data. The sym-
bol is assigned an address in the output stream at block 623,
and queued at block 625 prior to output. From block 625, the
process 600 continues at block 631. Atblock 631, if the end of
the data block has been reached, the process 600 continues
back to block 601 to parse the header of the next data block.
Otherwise, the process 600 continues at block 633. At block
633, the process 600 for an uncompressed block continues
back to block 635, where the next symbol is processed. For
each uncompressed data block, the process 600 thus reads the
symbols from the data block to the output stream until the end
of the block is reached.

For a fixed Huffman encoded block, the process 600 tran-
sitions from block 601 to block 605. Thus, the process 600 for
decoding a fixed Huffman encoded block is similar to the
process 600 for decoding a dynamic Huffman block, except
that the creation of the code length table 603 is skipped.

For a dynamic Huffman encoded block, the process 600
continues from block 601 to block 603. At block 603, the
decompression engine 100 creates a code length table from
(HCLEN+4) 3-bit codes each indicating a code length for a
symbol in the code length alphabet. The code length table is
created using the code length decoder module 201, which
stores the code length table in code registers 310. The code
length decoder module 201 then performs decoding of the
(HLIT+257) length codes for the literal/length Huffman table
and (HDIST+1) length codes for the distance Huffman table.
From block 603, the process 600 continues at block 605.

At block 605, the decompression engine 100 creates the
decoding tables for literal and length symbols. The decoding
tables include a Huffman code table for storing Huffman
codes for each of the literal symbols and length symbols, and
also include a table of start codes and start addresses for each
code group. The table generator 203 portion of the decom-
pression engine 100 creates the decoding tables 204 and 205.
From block 605, the process 600 continues at block 607.

At block 607, the decompression engine 100 creates
decoding tables for an alphabet of distance symbols. These
decoding tables include a Huffman code table storing a Huft-
man code for each symbol in the alphabet of distance symbols
and also include a table for the starting codes and starting
addresses for each code group containing codes for distance
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symbols. Table 203 or a similar table generator generates the
decoding tables. From block 607, the process 600 continues
at block 609.

At block 609, the decompression engine 100 receives an
input code from a bitstream of encoded data. For example, the
decoder module 206 of the decompression engine 100
receives the leading bits of the encoded data comprising the
input code from input 101. From block 609, the process 600
continues at block 611.

At block 611, the decoder module 206 calculates in paral-
lel, based on the received input code, a set of candidate
addresses, where each candidate address corresponds to one
of'the code groups. Block 611 further includes the operations
represented in blocks 613 and 615.

At block 613, the decoder module 206 subtracts, for each
code group, a starting code from the input code to generate an
offset value. Subtractor 511, as illustrated in FIG. 5, performs
this subtraction operation. From block 613, the process 600
continues at block 615.

At block 615, the decoder module 206 calculates a candi-
date address for each of the code groups by adding the offset
value generated at block 613 to a starting address correspond-
ing to the code group. This operation is performed by adders
512, as illustrated in FIG. 5. The decoder module 206 thus
calculates the candidate addresses in parallel by performing
the operations of blocks 613 and 615. From block 615, the
process 600 continues at block 617.

At block 617, the group identifier module 500 of the
decoder module 206 identifies a code group corresponding to
the input code. The decoder module 206 identifies the appro-
priate code group by, for each of the code groups, comparing
the input code with a starting code 501 for the code group.
Comparison logic 513 performs the comparison in parallel,
generating a comparison result that indicates the code group
in which the input code is a member. From block 617, the
process 600 continues at block 619.

At block 619, the group identifier module 500 selects the
candidate addresses corresponding to the identified code
group as a final address 511 for the symbol being decoded.
Encoder 503 converts the comparison result from logic 513
into one or more signals for causing multiplexer 510 to select
the candidate address corresponding to the identified group as
the final symbol address 511. From block 619, the process
600 continues at block 621.

Atblock 621, the decoder module 206 reads from a decod-
ing table 204 a decoded symbol corresponding to the input
code. The decoder module 206 reads the decoded symbol
from a memory address of the decoding table that matches the
final address selected at block 619. The decoding table 204
outputs a literal or length symbol 208 in response to receiving
the final symbol address 511 selected by the multiplexer 510.
If the symbol 208 is a length symbol, the decoder module
processes the next input code as a distance symbol, using a
distance decoding table to decode the distance symbol. The
decoder module then outputs the decoded length-distance
pair. From block 621, the process 600 continues at block 623.

At block 623, the symbol restoration block 110 of the
decompression engine 100, as illustrated in FIG. 1, receives
the decoded symbol and assign to the decoded symbol an
address in the final output stream. From block 623, the pro-
cess 600 continues at block 625.

Atblock 625, the symbol restoration block 110 queues the
decoded literal symbols or length-distance pair. The demul-
tiplexer 111 sorts the decoded symbol or length-distance pairs
so that literal symbols are queued in the literal FIFO buffer
112 and length-distance pairs are queued in the string FIFO
113. From block 625, the process 600 continues at block 631.
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At block 631, the decompression engine 100 determines
whether the end of the block has been reached. If the end of
the block has not been reached, process 600 continues back to
block 609 via block 633, to process the next input code. If the
end of the block has been reached, process 600 continues
back to block 601, where the header of the next block is
processed.

From block 625, the process 600 concurrently continues at
block 627. The operations of blocks 627 and 629 are per-
formed in parallel with the decoding operations of blocks
601-625 and 631-633. At block 627, the symbol restoration
block 110 recovers the strings of symbols from history buffer
114 as specified by the length-distance pairs in the string
FIFO 113. From block 627, the process 600 continues at
block 629.

At block 629, the symbol restoration block 110 stores each
decoded literal symbol or recovered string of symbols in the
history buffer 114 in sequence with other symbols decoded
from the bitstream of encoded data. The symbol restoration
block 110 outputs the literal symbols and strings to the sym-
bol output 116 in order according to the output stream address
assigned at block 623.

The embodiments described herein may include various
operations. These operations may be performed by hardware
components, software, firmware, or a combination thereof.
As used herein, the term “coupled to” may mean coupled
directly or indirectly through one or more intervening com-
ponents. Any of the signals provided over various buses
described herein may be time multiplexed with other signals
and provided over one or more common buses. Additionally,
the interconnection between circuit components or blocks
may be shown as buses or as single signal lines. Each of the
buses may alternatively be one or more single signal lines and
each of the single signal lines may alternatively be buses.

Certain embodiments may be implemented as a computer
program product that may include instructions stored on a
non-transitory computer-readable medium. These instruc-
tions may be used to program a general-purpose or special-
purpose processor to perform the described operations. A
computer-readable medium includes any mechanism for stor-
ing or transmitting information in a form (e.g., software,
processing application) readable by a machine (e.g., a com-
puter). The non-transitory computer-readable storage
medium may include, but is not limited to, magnetic storage
medium (e.g., floppy diskette); optical storage medium (e.g.,
CD-ROM); magneto-optical storage medium; read-only
memory (ROM); random-access memory (RAM); erasable
programmable memory (e.g., EPROM and EEPROM); flash
memory, or another type of medium suitable for storing elec-
tronic instructions.

Additionally, some embodiments may be practiced in dis-
tributed computing environments where the computer-read-
able medium is stored on and/or executed by more than one
computer system. In addition, the information transferred
between computer systems may either be pulled or pushed
across the transmission medium connecting the computer
systems.

Generally, a data structure representing the decompression
engine 100 and/or portions thereof carried on the computer-
readable storage medium may be a database or other data
structure which can be read by a program and used, directly or
indirectly, to fabricate the hardware comprising the decom-
pression engine 100. For example, the data structure may be
abehavioral-level description or register-transfer level (RTL)
description of the hardware functionality in a high level
design language (HDL) such as Verilog or VHDL. The
description may be read by a synthesis tool which may syn-
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thesize the description to produce a netlist comprising a list of
gates from a synthesis library. The netlist comprises a set of
gates which also represent the functionality of the hardware
comprising the decompression engine 100. The netlist may
then be placed and routed to produce a data set describing
geometric shapes to be applied to masks. The masks may then
be used in various semiconductor fabrication steps to produce
a semiconductor circuit or circuits corresponding to the
decompression engine 100. Alternatively, the database on the
computer-readable storage medium may be the netlist (with
or without the synthesis library) or the data set, as desired, or
Graphic Data System (GDS) I data.

Although the operations of the method(s) herein are shown
and described in a particular order, the order of the operations
of'each method may be altered so that certain operations may
be performed in an inverse order or so that certain operation
may be performed, at least in part, concurrently with other
operations. In another embodiment, instructions or sub-op-
erations of distinct operations may be in an intermittent and/
or alternating manner.

In the foregoing specification, the embodiments have been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the embodiments as set
forth in the appended claims. The specification and drawings
are, accordingly, to be regarded in an illustrative sense rather
than a restrictive sense.

What is claimed is:

1. An apparatus, comprising:

an input configured to receive an input code, wherein the
input code comprises one or more bits from a bitstream
of encoded data;

a symbol decoder coupled with the input, wherein the
symbol decoder is configured to calculate, based on the
input code, a plurality of candidate addresses, wherein
each of the plurality of candidate addresses corresponds
to one of a plurality of code groups, and wherein the
symbol decoder comprises:

a group identifier module coupled with the symbol
decoder, wherein the group identifier module is con-
figured to identify one of the plurality of code groups
corresponding to the input code; and

a multiplexer coupled with the group identifier module,
wherein the multiplexer is configured to select as a
final address one of the plurality of candidate
addresses corresponding to the identified code group.

2. The apparatus of claim 1, wherein the symbol decoder
further comprises, for each code group of the plurality of code
groups:

a subtractor coupled with the input, wherein the subtractor
is configured to subtract a starting code from the input
code to generate an offset value; and

an adder coupled with the subtractor, wherein the adder is
configured to calculate one of the plurality of candidate
addresses by adding the offset value to a starting address
corresponding to the code group.

3. The apparatus of claim 2, further comprising, for each

code group of the plurality of code groups:

a first register coupled with the subtractor, wherein the first
register is configured to store a starting code for the code
group; and

a second register coupled with the adder, wherein the sec-
ond register is configured to store a starting address for
the code group.

4. The apparatus of claim 1, wherein the symbol decoder is

configured to calculate the candidate addresses in parallel.
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5. The apparatus of claim 1, wherein the group identifier
module comprises comparison logic configured to compare,
in parallel, the input code with a starting code for each of the
plurality of code groups.

6. The apparatus of claim 1, further comprising a decoding
table coupled with the multiplexer, wherein the decoding
table is configured to, in response to receiving the final
address, output a symbol corresponding to the input code
from a memory address matching the final address.

7. The apparatus of claim 6, further comprising a history
buffer coupled with the symbol decoder, wherein the history
buffer is configured to store the symbol in sequence with
other symbols decoded by the symbol decoder from the bit-
stream of encoded data.

8. A method, comprising:

receiving an input code comprising one or more bits from
a bitstream of encoded data;

based on the input code, calculating in parallel a plurality
of candidate addresses each corresponding to one of a
plurality of code groups;

identifying one of the plurality of code groups correspond-
ing to the input code by comparing the input code with a
starting code for each of the plurality of code groups;

selecting as a final address one of the plurality of candidate
addresses corresponding to the identified code group.

9. The method of claim 8, further comprising, for each code
group of the plurality of code groups:

subtracting a starting code from the input code to generate
an offset value; and

calculating one of the plurality of candidate addresses by
adding the offset value to a starting address correspond-
ing to the code group.

10. The method of claim 9, further comprising, for each

code group of the plurality of code groups:

storing a starting code for the code group; and

storing a starting address for the code group.

11. The method of claim 8, wherein the comparing the
input code with the starting code for each of the plurality of
code groups is performed in parallel.

12. The method of claim 8, further comprising reading
from a decoding table a symbol corresponding to the input
code from a memory address of the decoding table matching
the final address.

13. The method of claim 12, further comprising storing the
symbol in a history buffer in sequence with other symbols
decoded from the bitstream of encoded data.

14. A system, comprising:

an input configured to receive a sequence of bits;

a table generator coupled with the input, wherein the table
generator is configured to generate a decoding table
based on a first set of input codes in the sequence of bits;
and

a symbol decoder coupled with the input, wherein the
symbol decoder is configured to calculate, based on a
second set of input codes in the sequence of bits, a
plurality of candidate addresses, wherein each of the
plurality of candidate addresses corresponds to one of a
plurality of code groups, and wherein the symbol
decoder comprises:

a group identifier module coupled with the symbol
decoder, wherein the group identifier module is con-
figured to identify one of the plurality of code groups
corresponding to the input code; and

a multiplexer coupled with the group identifier module,
wherein the multiplexer is configured to select as a
final address one of the plurality of candidate
addresses corresponding to the identified code group.
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15. The system of claim 14, further comprising a memory
configured to store the decoding table, wherein the memory is
further configured to output from the decoding table a symbol
corresponding to the final address in response to receiving the
final address from the multiplexer.

16. The system of claim 14, wherein the symbol decoder is
configured to calculate the candidate addresses in parallel,
and wherein the symbol decoder further comprises, for each
code group of the plurality of code groups:

a subtractor coupled with the input, wherein the subtractor
is configured to subtract a starting code from the input
code to generate an offset value;

a first register coupled with the subtractor, wherein the first
register is configured to store the starting code for the
code group;

an adder coupled with the subtractor, wherein the adder is
configured to calculate one of the plurality of candidate
addresses by adding the offset value to a starting address
corresponding to the code group; and

a second register coupled with the adder, wherein the sec-
ond register is configured to store the starting address for
the code group.

10

15

20

18

17. The system of claim 14, wherein the group identifier
module comprises comparison logic configured to compare
the input code with a starting code in parallel for each of the
plurality of code groups.

18. The system of claim 14, further comprising a demulti-
plexer coupled with the symbol decoder, wherein the demul-
tiplexer is configured to transmit a symbol from the symbol
decoder to a literal buffer if the symbol is a literal symbol, and
to transmit the symbol to a string buffer if the symbol repre-
sents a length-distance pair.

19. The system of claim 18, further comprising a read
interface module coupled with the string buffer, wherein the
read interface module is configured to retrieve a string from
the history buffer based on a length-distance pair, and
wherein the symbol decoder is further configured to calculate
the plurality of candidate addresses while the read interface
module retrieves the string from the history buffer.

20. The system of claim 19, wherein the length-distance
pair is decoded by the decoding module prior to the decoding
of'each ofaplurality ofliteral symbols, and wherein the literal
buffer comprises a first-in-first-out (FIFO) buffer configured
to store the plurality of literal symbols and output the plurality
ofliteral symbols after the read interface module has retrieved
the string.



